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We seek the dynamics of a Bergmann manifold: a manifold of dimension n = N 2 

supporting a bundle of spinor spaces of dimension N, and a map cr from the 
tangent spaces to the Hermitian spinor forms. Even though the spin-vector cr is 
the fundamental variable of the theory, every invariant analytic function depend- 
ing on ~r and its first m derivatives alone can be expressed in terms of the 
chronometric tensor g and its first m derivatives. Bergmann manifolds of 
dimension n > 4 do not have invariant second-order equations for cr. We find a 
family of invariant actions which lead to nth-order quasilinear equations of 
motion on Bergmann manifolds and reduce to the Einstein-Hilbert action for 
n = 2. The resulting gauge particles have spin, 1/2, 1, 3/2, and 2. 

1. I N T R O D U C T I O N  

This work is a segment  of a large program to provide a unified theory 

of the forces of na ture  and  of the internal  degrees of f reedom of particles, 
such as spin,  color, and  flavor. It also uni tes  two different approaches  to 

this goal. One  approach  is through higher d imens iona l  theories (Ka luza -  

Kle in  theories) in which e lect romagnet ism and  other forces emerge as 

mani fes ta t ion  of the extra d imensions .  Another  is to assume at each time- 
space po in t  an under ly ing  sp inor  space that  is "so ldered"  to the tangent  
space at this point .  This soldering is taken as the fundamen ta l  variable of 
the theory and  the t ime-space mani fo ld  arises f rom it. 

F inkels te in  (1986) marries the two approaches  into one theory in which 

the man i fo ld  emerges from a n  under ly ing  spinor ia l  space, with spinors  

which are not  two-d imens iona l  as customary,  bu t  can be of any d imens ion  
N >  0. The mani fo ld  is locally diffeomorphic  to the space of Hermi t ian  
forms on a sp inor  space, so that  its d imens ion  is n = N 2. It turns out that 

the mani fo ld  is not  R iemann ian .  The norm of proper  t ime (except for N = 2, 
n = 4 )  is not  quadrat ic ,  bu t  N-ic.  The chronometr ic  tensor  g carries N 
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indices rather than two. [A more detailed presentation of the above ideas 
is to be found in Finkelstein et al. (1986).] Since Bergmann (1957) was the 
first to suggest spinors (with N = 2) as primary elements of time-space, the 
manifolds bear his name and BN stands for a manifold based on an 
N-dimensional spinor space. We use the prefix hyper on these manifolds 
(hyperspin, hyperaction, hypergravity, etc.) 

It is clear that the program of D. Finkelstein calls for a generalization 
of general relativity from 2- to N-component  spinors. The present work is 
one step in this program. It studies the dynamics of the generalized theory. 

The first goal was to find a suitable action or family of actions for 
Bergmann manifolds. Several actions on higher dimension Riemannian 
manifolds are suggested by Lovelock (1971) and Zumino (1986) indepen- 
dently. [See also a survey by Deruelle and Madore (1986) of papers concern- 
ing Lovelock's action.] 

Section 2 describes attempts to generalize those higher dimension 
actions to hypergravity. In doing so, a deeper understanding of Bergmann 
manifolds is achieved. In Section 2.2 the concept of quasitensor is defined. 
The central theorem of Section 2.3 deals with the fact that the spin-vector 
cr does not show in the action of general relativity. It proves that even 
though the fundamental variable of the theory is the spin-vector tr, every 
invariant time-space function of or and its first m derivatives is such a 
function of g and its first m derivatives alone. Section 2.4 studies invariant 
tensors on Bergmann manifolds and proves that they are a sum of permuta- 
tions of products of the Kronecker delta with the Grassmann form, the 
fundamental antisymmetric N-index tensor of the spinor space, defined by 
a fundamental scalar den- 'g - i t~p~e  search for an action in the spirit of  
Lovelock and Zumino comes to its end in Theorem 2.5.2, which proves that 
invariant second-order equations exist only for a 4-dimensional Bergmann 
manifold, and in Theorem 2.5.3, which proves that Zumino's actions do 
not generalize to second-order actions for Bergmann manifolds with 
dimension higher than four. 

In Section 3 a family of actions on Bergmann manifolds is found and 
it is proved in Section 3.1 that for N = 2 the hyperactions are proportional 
to the Einstein-Hilbert action. The equations of motion are calculated from - 
the variational principle in Section 3.2. Section 3.3 gives the equation of 
motion on a Bergmann manifold with sources. The equations resemble 
Einstein field equations and reduce to them for N = 2. The spin-vector is 
hidden and the explicit dependence of both the action and the equations 
of motion is on the chronometric tensor g and its derivatives alone. Then 
a fiat background is assumed with a small perturbation ~o- to describe gauge 
particles. The spin of the particles is discussed in Section 3.4 and a spin 
spectrum given by D. Finkelstein is corrected. Section 3.5 states some 
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questions to be answered in the future concerning uniqueness of the action, 
solutions of the equations of motion, collapse of the internal dimensions, 
and black and white holes. These are representatives of a large fund of still 
open questions related to gravity on Bergmann manifolds. 

Section 3 concludes the presentation with a brief examination of the 
major points that have been accomplished. 

2. SEARCH FOR ACTIONS IN BERGMANN MANIFOLDS 

2.1. Introduction 

In this section we answer two questions about Bergmann manifolds. 
In principle, the field variable of an action functional for hypergravity 

is the hyperspin vector o-. First we ask if all action densities for hypergravity 
that are analytic invariant functions of or and its first m derivatives may be 
expressed as functions of g and its first m derivatives alone. The answer is 
yes. Using only time-space (nonspinorial) variables to make the action does 
not involve loss of  generality, even though the underlying structure is 
spinorial. 

The case N = 2, n = 4, m = 2 is treated by Noriega and Schifini (1986). 
Our proof  is for arbitrary spinor dimension N and arbitrary order of  
derivative m, and requires a different method. 

We then discuss possible actions and ask if there is an analogue of the 
Einstein-Hilbert action, an invariant action of the second differential order 
that is linear in the second derivative of o- (or g). The answer is no, except 
in four dimensions. Among Bergmann manifolds of all dimensions, only 
the four-dimensional ones have an invariant action principle leading to a 
quasilinear second-order equation for the spin-vector (and therefore for the 
chronometric tensor). This is in contrast with the Riemannian theory, which 
admits increasingly many such actions with increasing dimension (Lovelock, 
1971; Zumino, 1986). 

2.2. Quasitensors 

By geometrical object (Anderson, 1967) we mean an entity whose 
description, if known in one coordinate system, can be calculated in any 
other; briefly, a description with a transformation law, under a specified 
collection of transformations. The geometric objects that occur here are 
quasitensors. A quasitensor is defined as a geometric object that undergoes 
a linear transformation with coefficients possibly depending not only on 
the Jacobian matrix X = (Ox'/Ox) of the coordinate transformation, but also 
on the first- and higher order coordinate derivatives of X. 
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Examples: Relative to (differentiable) coordinate transformations, the 
chronometric tensor g of  a Riemannian manifold is a geometric object, 
while Og (where 0 is an ordinary derivative) is not. The pair (g, Og), however, 
is a geometric object, and a quasitensor. The same holds for Bergmann 
manifolds. 

We consider entities that are scalars with respect to spinor transforma- 
tions and quasitensors with respect to time-space transformations. We call 
them time-space quasitensors. 

I f  a functional relation Y = f ( X )  between geometric objects X and Y 
commutes with the transformation T 

f ( T X )  : T f ( X )  

then it is called invariant under T. 

Definition. We designate the mth derivative schematically by 
a m =aa, " " �9 aam 

and the set of  all derivatives up to and including the Mth  by 

a{M}cr = cOmo'lm =0,  1, 2 , . . . ,  M} 

o(M~o " is a quasitensor for any M = O ,  1, 2 , . . .  ; so is the collection O~M}g. 

2.3. Hiding the Hyperspin Vector 

Theorem 2.3.1. At each point of an n-dimensional manifold, any 
analytic time-space quasitensor function of the quasitensor a{M}o - is a 
function of ~r and the time-space quasitensor o{M}g alone. 

Proof  For the case N = 2 ,  m =2 see Noriega and Schifini (1986). 
It suffices to prove the above-claimed relationship between a%r and 

O{m}g. We do this by induction on the order m of the derivatives. We define 
the symmetric polyspinor 

~c~lc~2'"C~N = E A I A 2 " " A N E A I A z ' " A N  

Using a somewhat shorter index notation in which a = AA,  we remember that 

g a~a2" ' ' aN  = o ' a ' l  O'a2- " " " O'ctN ~ a N  Oil ' ' '~NL 

Case m = 1: Due to the symmetry of 8, 

ogala2"" "a N o 0 . a l  
- N 1 o ' ~  . . . .  O.OLNSa N OrlOn2 . . . .  N 

Ox d OX d 2 

Solving for &r/ax, we get 

Ocr~ _~ .c~ N Og ~ ' % ~  
ax d - ~ "  �9 �9 ~ . 8  . . . .  . . .~ ax ~ 
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We mul t ip ly  the equa t ion  by  8~, b -~ = O ' ~ O ' b ' ,  and  get 

Oo'~' 1 crb Og~'a ~ ~  
Ox d - ~ ogb~=~r",,~ 

o r  
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(1) 

{1} 010 - = O'fl(O g )  

To get  a c loser  look  at the  re la t ion  be tween  ~ and  its der ivat ives  and  
g and  its der ivat ives ,  we ca lcula te  now the re la t ion  for  the  fo l lowing case: 

C a s e  m = 2: 

32 a, [O0.bl og a,a2.-.aN O'~ L 
o x d t o x  d 2 -  N \ Ox d2 gbaz'"aN" OX d, 

b Ogb,2...,~, ag  "'"2"''"~ - 
-~- O'ot I old2 Oxdl 

+ b 02g ala2"''aN 
oralgba2""aN OxdlOxd2 

Subst i tu t ing  the resul t  (1) for  m = 1, we get  

2 a~ o'~, 1 b, [ 1 og bb2""br~ Og ala2"''aN 
oxd~ox d2 -- N cr ~ , ~ - ~  gb~b2...bNgb~2 . . . . .  OXd2 ox  d~ 

-t" agba2. . . . .  Og ala2"''aN - -  02 g alaE'"aN ~ 
oxd2 aX e, "t'gba2" . . . .  " ~ ) 

o r  

Then 

020 . = ~rf2(o{2) g ) 

Final ly ,  we have the fo l lowing  case: 
C a s e  m = n :  We assume 

O"-l  o-= o - f ._ l (O{" -Ug)  

0(0" - -10  " ) 00" ofn__ l 
- f . _ ~  + a  oxd,, oxd,, ONe,, 

1 Og ofn--1 
= - -  t r g o - - ~ f , _ ,  + o ' - -  

N ~x  a', 

1 ag  _ a f , , _ , \  

( o s_g_ 
crf, k g, . . . , a x  a . . . .  axa, ,]  
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o r  

Oncr = o-f,(Ol"~g) �9 

Theorem 2.3.2. Any invariant analytic scalar function of tr and its first 
m derivatives is such a function of g and its first m derivatives alone. 

Proof Using the previous theorem, it suffices to prove that we can 
eliminate the o" dependence and leave only the dependence on g and its 
derivatives. It suffices to look at scalars made from polynomials in tr, ~, 
and a~g '~ by contraction. For such a polynomial to be a scalar invariant, 
each tr has to be paired with a & This results in a ~ function. Therefore, 
only the dependence on Otm~g remains. I I  

We have seen that all action densities that are invariant analytic scalar 
functions of  the hyperspin vector field tr and its first m derivatives can be 
completely expressed in terms of the chronometric g and its first m deriva- 
tives. This simplifies some calculations. For the equations of  motion, 
however, we must independently vary the components of  tr, not g, which 
is subject to algebraic constraints (unless N = 2). The hyperspin vector is 
hidden, but not gone. 

2.4. Invariant Tensors 

2.4.1. Notation 

A sequence of indices A1 �9 �9 �9 Ak is abbreviated by (A) and we define 
I(A)[: = k. Most times k is understood from context and may vary. To reduce 
confusion, we mark by a prime any removed index. For example, the 
sequence (A) can be written as Ap(A)'  or as Apq(A)". 

I f  there is a symmetry condition on the indices, it is indicated by the 
kind of brackets: a symmetric sequence of indices is {A}; an antisymmetric 
sequence is [A], in agreement with the notation for anticommutators and 
commutators.  

The following discussion deals only with proper spinors (undotted 
indices), but an analogous discussion can be carried out for the antispinor 
(with dotted indices). 

At times indices of  a tensor are omitted from the text to increase clarity 
and readability. To avoid confusion, we therefore never use the letter g for 
the determinant of  the chronometric tensor, and whenever g appears it 
stands for the tensor itself. 

2.4.2. Occurrence 

I f  F is any index value, L is any tensor, and (A) and (B) are index 
value sequences, then by the occurrence of F in /'(A) ~'(m we mean the ordered 
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pair  (~,), where a is the number  o f  F ' s  in (A) and b is the number  o f  F ' s  
in (B). By the net occurrence of  F we mean  a -  b. 

t~23 is (~). The net occurrence is 0. Example: The occurrence o f  2 in x.,234 

2.4.3. Representations 

Let D(~) be the representat ion o f  SL(N,  C) suppor ted  by the tensors 
o f  rank (r). 

Similarly, let DW(~,) be the representations o f  GL(N,  C) suppor ted  by 
r(A) ](B)[ = s, and weight w. These t ransform the relative tensor  L,(m with I ( A ) I  = r, 

under  an element T of  GL(N,  C) with determinant  r as follows: 

L ( A ' )  (B') = T w [ (  T g ' ) @ s (  ~ A ' ) @ r ]  lr(A) ~(m I T =  ( T - l )  T ] (2) 

where the superscript @r  designates an r-fold tensor product .  For  short  
we write 

L'= T o L  

When restricted to SL(N,  C), DW(~) reduces to D(~). 

2.4.4. The Operator 0 

r ( A ) .  It is convenient  to define the tensor opera tor  0 F on a tensor ~(B). 

o F / ' r ( A ) ~  _ ~ A I T F A 2 " " A  r ~ A 2 1 A 1 F ' " A  r ~ A r [ A t A 2 " " F  
H~x.~(B)~ --  u H L.,(B ) "Jr u H x.~(B ) "~- �9 �9 �9 "It- ~ H  ~ ( B )  

[ ~ F  L ( A )  .z- R F  I-(A) .2- R F  I ( A )  
- tuB1 -Br . -s~-  ~" Bd-'B,n--.B~--" " " + ~B/-'B,B~-.-,J (3) 

r ( A )  ~ the Whenever  F = H, 0~ multiplies ~(B) ~,Y net occurrence f -  h o f  F "  , (a ) .  In L ( m .  

r r ~  a F / T ( A ) ~  _ _  (A) F = n ~ a  m ~ ( m ,  - ( f -  h)L(m (4) 

The notat ion 0~ of  (3) is to remind us that  a ~ L  is the Lie derivative 
o f  T o L given by (2) with respect to T F evaluated at T F = 8F:  

o H  r ( a ) _  o(  T o  L)I~I ] 

2.4.5. Properties of  Invariant Tensors 

Lemma 2.4.1. Let L be an invariant SL(N,  C) tensor o f  rank (~). The 
componen t  ~(mr(A) is nonzero  only if the net occurrence a - b o f  any index 
value F in ~(B)r(a) is the same for all F. If  r(A)~(m ~. 0 , ~  then r - s  is an integer 
multiple o f  N. 
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Proof A tensor is invariant under the unimodular group SL ( N ,  C) if 

L(C)_  "c B (A) (D) -  ( S A ) ( S o ) L ( m  

~A C for all S ~  S L ( N ,  C), where S c S B  = 6 A and A B C D  all refer to the same 
coordinate system. 

It is convenient to extend any S L ( N ,  C) tensor L into a G L ( N ,  C) 
tensor L. For any T e  G L ( N ,  C), let us write S A= TA/~ "(~/N), where z: = 
det( T A) and therefore S ~ S L ( N ,  C). Then i f l ( A ) l  = r and I(B)I  = s, we define 
the action of T on L by using the action of  S on L, 

T o L = SoL (5) 

already defined in Section 2.4.1, with weight 

w = (s - r ) / N  

Invariance of a function of L under SL(N ,  C) now implies invariance under 
G L ( N ,  C). Therefore, we may differentiate (2) with respect to T F and then 
choose T F = 3F: 

S ~ r R H I ( A )  -L. nHT(A) 
N UFJ-~(B) 'UF~(B)=O (6) 

Taking H = F and applying (5), we get 

r -- s L(A) _ (A) 
-~ (m - ( f  - h )L(m 

Therefore it(A) is nonzero only if /--'(B) 

( r - s ) / N  = f -  h (7) 

The left-hand of (7) depends only on the dimension N of  the space 
and on the rank (~) of the given tensor L and note on F. Therefore f -  h 
must be the same for all index values F, and we set f - h  =: m. 

Equation (7) can now be rewritten as r - s =  naN, where na is an 
integer. �9 

The method of Lie derivative and the results (6), (7) are extensions to 
arbitrary N of  Noriega and Schifini (1986). The first conclusion of Lemma 
2.4.1, however, is stronger than theirs, even for N = 2. 

Lemma 2.4.2. Any invariant t e n s o r s  L(A ) and M (A) with [(A)[ = N are 
scalar multiples of the antisymmetric tensors e ~al and etA J , respectively. 

Proof  We use the case m = 1 of Lemma 2.4.1. 
Choose any two index values A and B, we shall show that LAB(A)= 

- -LBA(A).  
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Let A = A'+B'  and B = A ' - B ' ;  that is, we make a local coordinate 
transformation in which the new coordinate basis forms e A' a r e  related to 
the old o n e s  e A b y  e A -~ e A ' +  e B' and e B = e A ' -  e B'. We also remember  that 
L A  = L A , e A ' +  LB,e~', which we write a s  L(A,+B, ~. We have 

LAB(A)"+ LBA(A)" = L(A,+B,)(A,_B,)(A),,q- L(A'--B')(A'+B')(A)" 

-~ 2( LA,A,(A).-b LB,B'(A)',) 

According to Lemma 2.4.1, LA,A,(A),,  = LB,B,(A),,  = 0 and therefore 

LAB(A ) . . . .  LBA(A),, 

Thus, antisymmetry holds for any pair of  indices. 
The same proof  can be carried out for the invariant tensor M (A). [] 

,(A) is invariant under SL(N, C) Theorem 2.4.1. An SL(N, C) tensor ~(B) 
iff L is a sum of tensor products of  e IF1, e[o], possibly with permuted or 
contracted indices. 

Proof " I f " :  Trivial, since the e 's  are invariant. 
" O n l y i f " :  We seek all tensors L that are invariant under SL(N, C). 

We consider first a contravariant tensor L. From such L we form by (4) the 
GL(N, C) relative tensor with weight w = - m ,  where m is defined in Lemma 
2.4.1. I f  L is an SL(N, C) tensor of rank (~), then the corresponding 
GL(N, C) tensor L transforms according to D-m(~). 

I f  L is invariant under  SL(N, C), then L is invariant under GL(N, C). 
I f  L #  0, then m is an integer by Lemrna 2.4.1 and the subspace {)tL} must 
support  the one-dimensional representation D~ If  we reduce the rep- 
resentation D-m(~) of  GL(N, C) into its irreducible parts (Young diagrams), 
each possible L corresponds to a one-dimensional part. It is easy to see 
that these are the Young diagrams consisting only of columns of length N, 
each column representing the tensor e EA1. This completes the proof  for the 
contravariant case. (More detailed examination of the dimension of the 
representations of Young diagrams is given in Appendix A). 

To prove the general case of  a tensor L of rank (r), we raise all the s 
covariant indices. Each index is raised by contraction of this index of the 
tensor L with one index of e [A]. By lemma 2.4.1, r - s  = m N  if L #  0. Since 
index raising replaces each covariant index by N -  1 contravariant indices, 
we can write 

L(~ -~+ns) ~ L(~)eEAl...e EA] 

s f a c t o r s  

where C designates the above-described contraction and ( r - s  + Ns) is also 
an integer multiple of  N, as required for L #  O. To return from L(~ -s+n~) 
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to the original L(~), we contract each of the s antisymmetric groups of 
N -  1 contravariant indices of  L(~ -'+Ns) with e EAl, and thus replace each 
group by one covariant index and then multiply by a normalization factor 
1 / N !  to get back to L(~). 

Thus, the e 's  enable us to move freely between covariant and contra- 
variant tensors, preserving the form asserted in the theorem. Therefore the 
above proof  for the contravariant tensor suffices for all cases. [] 

2.5. Hyperaetion Lost 

In the Kaluza-Klein theories the dimension of the manifold is fixed 
once and for all. In this program the dimension of the spin space and 
therefore of  the spin manifold is a dynamical variable of  the theory. We 
imagine that near singularities of  the continuum theory higher dimensions 
may make a better approximate description of the universe (Finkelstein, 
1986). 

By a hyperaction I mean an expression in g and its derivatives that 
generates a family of  actions, one for each N. 

2.5.1. Geodesic and Normal Coordinates 

The right coordinates can be quite crucial in the study of gravity and 
hypergravity. They can reduce the work immensely, simplify the formulas 
and calculations, and let the physics show through. 

Most of  the thinking processes of  the rest of  the work take place in 
geodesic coordinates, which are defined below. Normal coordinates also play 
an important role. At each point of  time-space both coordinate systems can 
be defined. 

Definition. Geodesic coordinate system (GSC) at x. A system of coordin- 
ates y such that the geodesics through x have linear parametric equations 
y = vr with proper  time r as parameter. Then x is called the origin of  the 
GCS. 

Definition. GCS x g is said to be attached to a coordinate system (CS) 
x '  if the coordinate lines of  GCS are tangent to the corresponding coordinate 
lines of CS at the origin. 

The choice of letter for vector and spinor indices is used to indicate 
the kind of coordinate system. A typical CS is x', while X g is a CGS. The 
spinors underlying GCS carry the indices F and 1). The n equations relating 
the arbitrary CS to the GCS are 

X g = ~ t  S 

where s is a path parameter,  ~ '  = (dp'/ds)o, and x '  = p ' ( s )  is the parametric 
equation of the geodesic with p ' ( 0 ) =  Xo and p ' ( 1 ) =  x'. 
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The geodesic equations 

D 2  p '  / D s  2 = 0 

where D is the covariant derivative with respect to the parameter s, become 

d2pg/ ds 2 = 0 

in geodesic coordinates, where d is the ordinary derivative with respect 
to s. 

There are also conditions on the ambispinor spaces. We define at each 
point x '  basis spinors e r, e T, e r, and e i. The relation between them is 

eF(x) = X ~ e ~ ( x )  

and similarily for the dotted indices. We impose at the origin 

er(xo) = ~r(Xo)a~ 

and 

D, er (p)  = 0 

where /9, is the covariant derivative in the s direction. 

Theorem 2.5.1. The law of transformation from deodesic coordinate 
system g to a coordinate system ~ is linear if[ ~ is also geodesic. 

Proof  Clear. �9 

Definition. Following Thomas (1934), we define the ruth extension of 
~rgvr as a tensor whose component in a GCS are 

cr  g ~ m  g . ~  g 
r r l ( m )  = o O - t r i o - - .  o l a } O - t r  

When transforming to any CS x '  the ruth extension becomes 

l g V f ' v F  v - g v ( m )  
O'2~T[(t ) ~ ~f,F[(m).-~.  T-CX T~'Xt Ix ( t )  

Definition. Normal  coordinates are understood differently by different 
writers. We follow Veblen and yon Neumann (1935) and define normal 
coordinates as a coordinate system in which the ~r mapping takes a specific 
standard form. For N = 2 it is customary to take as normal coordinates 
those that use the four basic Pauli matrices for the four components of o-. 
For higher dimension a different choice proves to be more convenient. 

2.5.2. Second-Order Equations Only for  n = 4 

This is now the time to ask if we can find an action density for Bergmann 
manifolds that leads to equations of motion linear in the second derivative 
of the chronommetric tensor g. We shall see that the answer is no. 
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L e m m a  2.5.1. Let L(O~m~o-) be an invariant Lagrangian of any order. 
Then the Euler-Lagrange derivative 

d L  OL OL 2 OL 
E : = -ff-~c : = --~c - O x ~ + a x . ~--~--( • . . ( O x o- ) 

is a tensor. 

Proof: 

8 L =  [ (dL /do- )  8o- d " x  
d 

+ [ (expression resulting from integration by parts) So- 
da v 

We choose a surface on which &r = 0 and (8) becomes 

8 L =  [ ( d L / d o ' )  3o- d " x  
d 

I f  we have the transformation o---> T o o- under which o- transforms as 

o"  = X A o ' A  H (X'= X x ;  4 / =  A~) 

then 

8o" = X A S O - A  u 

and 

(8) 

(9) 

Io (dL/do-')8o'd~ (aL/ao-')XA&,A'X~ (lO) 

By comparing (9) and (10) we get the tensorial character of  E = dL/do ' .  [] 

L e m m a  2.5.2. The coeffident of  82o- in the quasilinear invariant 
Lagrangian L(a{2}o-) is an invariant tensor under G L ( N ,  C) transformations 
from one geodesic normal coordinate system to another. 

Proof. We choose a geodesic coordinate system (ao-~o = 0) and we take 
it to be normal at the origin 0: we may write (Veblen and yon Neumann 
(1935) 

m . M M  M h~/ 
o- AAIO'= o- AAIO = 8A  @(~A 

In such coordinate systems 

Z = K 2 A A ( o 2 o - )  r~An I 

where K is a tensor, since L is a tensor for all values of a2o-, and a2o- is a 
tensor. 
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The invariance of K 
invariance: 

On the other hand, 

stems immediately from the 

L(o-) = L( T o o-) = K (  T o 02o-) 

definition of 

(11) 

L =  K02o- = ( T o  K ) (  To  02o -) (12) 

Comparing (11) and (12) gives us the desired result 

K = T o K  [] 

Theorem 2.5.2. An invariant action density that is linear in the second 
derivative of  o- exists only for four-dimensional Bergmann manifolds. 

Proof  Let L=L(o-,Oo-,oRo-) be such an action density. Following 
Veblen and von Neumann (1935), we can always transform to a geodesic 
coordinate system in which 0o- = 0 and L = L(o-, 02o-). The requirement that 
L is linear in 02o - means that the coefficient K of 02or (which is an invariant 
tensor by Lemma 2.5.2) does not depend on 02or. Thus 

K = oL/a(a2o-) 

and since the index structure of  02o . is (~)x (i), the index structure of 
the tensor K is (3)x (i). By Lemma 2.4.1, K vanishes unless N = 2 and 
n = N 2 = 4 .  [] 

2.5.3. Generalized Zumino  Action Only for  n = 4 

Giving up the quest for a hyperaction density that leads to equations 
of  motion linear in the second derivative of  g, we search for a hyperaction 
that reduces to the Einstein-Hilbert  action for N = 2, but leads to equations 
of  motion in degree higher than two. Therefore, while Zumino writes his 
candidate action as an algebraic expression in the curvature tensor (which 
is the commutator  of  the covariant derivatives), we use the covariant 
derivative D~ explicitly. D~ is a l -form differential operator (with the 
coordinate index hidden) 

a a a 

Ob=abO"}- (.O b 

where w; is the connection. We still use the exterior product of  Zumino. 
To construct a hyperaction density candidate from an exterior product 

of  D's ,  we need to take into account the special features of hyperspin 
manifolds. As was pointed out before, the Bergmann chronometric tensor 
carries N indices and when lowering an index with it we end up with N - 1 
lower indices. To have an operator with all its indices lowered, we need to 
contract a product of  D~,'s with a product of  g ........ 's. Any such product 
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has a nonzero contribution when contracted with the Levi-Civita tensor e 
only if it has not more than one index inherited from g (since g is symmetric). 
Therefore, to make an operator with all its indices lowered, we must lower 
N - 1  upper indices with one g to give us one lower index. Thus, we 
contract N - 1  of the D~'s with one g and antisymmetrize to construct an 
( N -  1)-form Dba,.. aN_,: 

O b a l " " a N  I - -  R a l ' a 2 " ' " a N - l ' ~  O O l  b2 l " l b N - 1  
_ - -  2 . . .aN_l  l,~bl...bN_l b ctl, A D a 2 ,  A "  " " A L , , a N _  1, (13) 

We next study the operator (13) more closely and discover that it is 
an algebraic expression rather than a proper differential operator only for 
an even number of D's.  

Lemma 2.5.3. The operator (13) is algebraic for a Bergmann manifold 
with an odd dimension N and is a nonalgebraic differential operator for a 
manifold with an even dimension N. 

Proof If  we write the expression (13) explicitly, we get an unsym- 
metrized sum of products of M = N -  1 terms, each looking like (6jO + 0)j). 
The commutator [0, w] = (0 �9 0}), the derivative of  w, is algebraic. Therefore, 
if in a product of several D 's  we shift the derivatives to the right, we make 
only an algebraic contribution. We can therefore assume that after some 
manipulations we are left with expressions that have all their derivatives 
concentrated at the right. Then each term that has more than one derivative 
vanishes in the process of  the antisymmetrization. The only terms that 
deserve a closer look are those that have only one derivative in them. 

As an exercise, we first look at two cases. 
N = 2, M =  1: It is clear that the nonalgebraic contribution is 6~0, a 

proper differential operator. 
N =  4, M - - 3 :  Schematically, we look at antisymmetrization of  the sum 

010)20) 3 -{- 0)1020} 3 + 0)10)203 

which is 

010}20)3 -~- 030}10}2 + 020}30}1 - -  020}10}3 - -  030}20}1 --  010)30}2 

+ w 1 0 2 0 } 3  + 0)3010)2  + 0}2030)1 - -  0}2010}3 --  0}3020}1 - -  0}1030}2 

+ 0)10)203 "~ + 0)30}1(92 + 0)20}3191 -}- 0}20)103 --  0}30}201 --  0}10}302 

Each term on the first line can be paired with a term on the second line to 
make a commutator, which is algebraic, i.e., 

010}20}3 - -  ('02010}3 = (010}2 --  0}201)0}3 = (01 " 0}2)0}3 

The terms on the third line, however, have no such term to pair with, and 
since the operators 0}i and wj in general do not commute, the third line 
makes a proper differential-operator contribution. 
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Arbi t rary  N :  As in the example of N = 4, M = 3, it is obvious that for 
an even M we get pairs that are commutators and therefore make only 
algebraic contributions, while for odd M we are left with unpaired differen- 
tial terms. [] 

Theorem 2.5.3. A hyperaction that is a product of operators of the kind 
defined in (13) and that reduces to a Lovelock-Zumino action for N =  2 
does not exist for Bergmann manifolds of N > 2. 

Proof. We use the operator (13) as a building block for a density action. 
We try 

Do,. . . . .  A Db,...bN A" " " A e k  A el A" �9 "e a' .... '4"'"bN'"k'"" (14) 

with s of the D's  and r of the e's. Three requirements are to be satisfied 
simultaneously: 

(i) Due to Lemma 2.5.3, if the dimension N is even, s should be even. 
Otherwise, there is no restriction on s. The proof that for even N and even 
S (14) is algebraic is similar to the proof of Lemma 2.5.3. 

(ii) N s +  r =  n(for n - a d  indices). 
(iii) ( N -  1 ) s + ( N -  1)r = n = N 2 (for coordinate indices). 
The condition (iii) for N # 1 becomes 

s +  r =  N 2 / ( N - 1 )  

Since s +  r has to be a positive integer and since N 2 and N - 1  differ in 
parity, the above equation has a solution only for N = 2. This is the case 
where (13) is Zumino's action for N = 2. 

In other words, the generalized Zumino hyperaction exists only for 
n = 4 and not for higher dimensions for a Bergmann manifold. [] 

3, HYPERGRAVITY 

3.1. Hyperaction Regained 

Simply attempting to generalize Riemannian actions to Bergmann 
manifolds leads to a dead end. Either there are too many possibilities or 
none. 

The scalar wave equation is of order N in Bergmann manifolds, since 
to make a scalar from the differential operator OAa we need to take its norm. 
This leads us to seek gravitational actions that are quasilinear of order N 
instead of 2. 

The hyperaction density on Bergmann manifolds BN that we first 
discovered is proportional to the Nth extension of the chronometric tensor. 
We show below that 

L N  = pg~/]~/ (15) 
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where p is the chronometric density already defined, reduces to the Einstein- 
Hilbert action for N = 2. The notation {a} for a collective index is discussed 
in Section 2.4.1. 

Since a GCS is geodesic at but one point, we cannot easily integrate 
this expression over the manifold to get the action from the action density. 
We therefore look for other candidates. We learn from (13) to expect 
differential order N. 

A more tractable action density of this kind is 

LN = o R  . . . .  ;~3. . . . .  g ~  (16) 

where R . . . .  is the Ricci tensor, and the semicolon designates covariant 
derivative. Partial derivative is designated by a comma. Sometimes we apply 
the collective index notation for the N - 2  derivatives of  the Ricci tensor 
and write it as R(,~. 

We conjecture that two quasilinear Nth-order  actions differ at most 
by a constant multiplier and terms of lower order. 

Theorem 3.1. The two hyperactions (15) and (16) reduce (up to a 
numerical coefficient) to the curvature scalar density R for N = 2. 

Proof  (i) The action (15): For N = 2  

R(~) = R a la2 g  %a2 = R [] 

(ii) The action (16): F o r N  = 2 we show that R = 3g~"ll~ t = 3g~bl~b. Some 
identities are needed for the proof: 

Thomas (1934) proves that in GCS 

gab, cd -t- gad, bc + gac, db = 0 (7) 

where gab, cd = OcOdgab" 

Using the identity (17) and differentiating twice the relations 

gabgae  = t~bc 

we get the identity 

n m  
gab,ed -= -- g ,cd gn~ grab 

from which we can also deduce 

gac, bd g a b g  ca = gad, b c g a b g  cd 

and 

a b  a b  
g,ab = - -gab,  
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NOW, in GCS 
12 a a 

Rbcd = OcF bd --OdF bc 

= gam(OcFmbd --OdFmbc) 

= �89 d + gm<b -- gbd, m] -- Od [gmb, c + gmc, b -- gbc, m]) 

= lgam{gmd, bc -- gbd, mc -- gcm.bd -t- gab, rod} 

Since 

we have 

R = Rbdg bd = R~adg bd 

R = lg~mgbd{gmd, b a -- gbd, ma -- gam,bd + gab, rod} 

= --gamgbd{gab, md -- gbd, ma} 

I f  we mult iply and contract  (17) with _ g a m g b d ,  we get 

gamgbd{gbd, ma + gba, md + gbm,ad} = gam gbd{gbd, ma + 2gab, md} : 0 

Solving (19) for gamgbdgbd, m a and substituting in (18), we get 

R = --3gamgbdgab, m d = 3 g  rod, m d  

Renaming indices and t ransforming from GCS to CS, we can write 

R = - - 3 g ~ b [ ~  b [] 

267 

(18) 

3.2. Equations of Motion in Hyperspin Manifolds 

In deriving the equat ions o f  motion,  it is necessary to recall Section 
2.3, in which we prove that while the act ion can be expressed in terms of  
the chronometr ic  tensor g and its derivatives alone, in performing variations, 
o- has to be taken as the fundamenta l  variable. 

The act ion we choose  is the one o f  (16): 

6 1 p L s ( d x )  n =  f P ( S R ( a ) ) g ( a I ( d x ) n  

In a GCS  at x, F = 0, 6rF;~ = 6rF,.,  and 

6R . . . .  = 6Fab a2;b -- t~Fba,b;a2 

at x. Since this is a tensor  equation, it holds in any CS, and since x is 
arbitrary, it holds everywhere. Therefore we may differentiate it: 

_ 8  b 6 R  . . . .  ;1,,},, = t~Fab,az;bla} " Fa,b;,~z{a},' (21) 
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To calculate the first integral of  (20), we apply (21) and then integrate by 
parts N - 2  times. The result is zero, since F vanishes in GCS and the 
boundary terms vanish as well. Therefore, as in the case N = 2, the variations 
of  Rab do not contribute to the equation of motion. It suffices to vary only 
the simpler factor pgab of the action. This fact, well known for N = 2, 
underlies the Zumino analysis, which therefore can likely be carried out 
for any N, with suitable changes. 

The other two integrals are to be rewritten in terms of 8o-. For this we 
need to calculate 6p/60- and 6gl60-: 

p = det[(0-~B) -1] 
(22) 

6 p  c , [  b2 b2 b 
= -- oI, etb]O'il 0-i2" " "0-/~N) 

When we apply the variation 6 in (22), the first term in the sum of n terms 
is 

b 2 b ~ b 1 c, b l ~ ,  b 1 
- - 8 [ b ] 0 - i 2  ' " " 0 - N N O O ' i l  = - ( c o f a c t o r  of o 0 - i ~ ) o 0 - i l  

and the sum of all the terms gives 

b - 1  A A  a A A o  a 6 p = - d e t [ ( 0 - a ~ )  ]0-a 60"AA =-p'.r~ 00-AA (23) 

g{~} o, ~qN o[A}o [A] - -  {0-~A}E[A]8[ A] 
= 0 - . ~ t A  1 " " " ~ A N A N C ,  C - -  

and due to the symmetry of g 

6 g  {a}=  N60-aAA{O'aAA}'e[A]e[A] (24) 

We can now substitute (23) and (22) in (20) and equate the coefficients of  
60-,~ a to zero. This leads to the equation 

a , [A] [ a ]  A A  NpR(a){0-AA} e 8 -- P0-a R = 0 (25) 

where we define 

R := R(a)g {a} 

We now divide (25) by Np and multiply and contract with 0-ba to get the 
equation of motion in vacuum 

where we define 

R~ - N  6b"R = 0 (26) 

b . m  Ra . -  R(o)g {~} b 

The group manifold of the unitary group U ( N )  may be provided with 
a natural invariant hyperspin structure and is then homogeneous of constant 
curvature (Holm, 1987). Therefore, for N > 2, R and R b (which include 
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covariant derivatives of  the curvature) vanish, and equation (26) is satisfied. 
For N - - 2 ,  as we know from Einstein, R and Rb are nonzero and dust and 
the cosmological term must be added in order to have U(2) obey the 
equation of motion. 

3.3. Hypergravity with Sources 

When we study gravity in the presence of sources, the action (16) has 
to be modified. We assume a field ~ and take the action density L' to be a 
function of ~ and g and their derivatives. Therefore equation (20) is replaced 
by 

~ f  p L N ( d x ) n §  pL'(dx) ~ = 0  

where L ' - -  L'(~,  g). 
We define the energy (momentum stress) tensor Tb: 

b ._  1 

T a .-  - "~p ~0"4 A 

In a way similar to the derivation of the equations of  motion in vacuum, 
we get the equations of  motion in the presence of matter 

b 1 R~ - ~  8bR = T b 

Considering the difference in order, the resemblance to Einstein's field 
equation is noteworthy. It is also remarkable that even though the funda- 
mental variable of  the theory is the spin-vector t~, there is no evidence of 
it in the equations of  motion. The "soldering" is hidden and what we see 
is only the chronometric tensor. 

3.4. Gauge Particles on Bergmann Manifolds 

What kind of quanta are present in the gravitational field of  a Bergmann 
manifold? This is a quantum mechanical question. To deal with it, we 
consider a flat manifold with small perturbation &r. The equations of  motion 
for &r are linearized versions of  the general law of motion for t~ already 
given in Section 3.2. In a normal GCS we may assign indices E ~-1, 2 to 
external spinor components  and I = 3 , . . . ,  N to internal ones. (We choose 
the word external for four time-space dimensions and internal for the higher 
dimensions). Then external tangent vector components  have the index 
structure v E~, the internal tangent vector is v n and the mixed vector is v Ej 

IE" 
OF V 
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We use the representations of the Lorentz group (Paerl, 1969) to classify 
the particles that arise from the field 6o. 

The representations of the Lorentz group are D(J, J), where 

2J = the number of spinor indices 

2J = the number of antispinor indices 

Not all indices contribute to the (ordinary four-dimensional) "external" 
spin. Contributions to the external spin come only from the external 
dimensions (N = 1, 2 ; / 9  = i, 2). The internal dimensions are to account for 
other degrees of freedom, such as electric charge, color, flavor, etc. Therefore 
J and J range from 0 (no external indices) to 1 (two external indices) and 
j j  is 00, ~ ,  l 11 ~0, 01, 10, ~ ~, 11, 11, or 11. This means that the theory predicts 
at most gauge particles of spin, 0, 1/2, 1, 3/2, and 2. This corrects the 
erroneous prediction of higher spin by Finkelstein (1986) made on the basis 
of the transformation property of g{a~, not o-. 

We get a closer look at the index partition in the following table: 

E/~ D(1, 1) D(1,�89 D(�89 1) D(�89 �89 
E~f D(1,�89 D(1,0) D(�89189 D(�89 I) 
1/~ D(�89 1) D(�89 �89 D(0, 1) D(0, �89 
I I  1 1 D(~, ~) D(�89 O) D(0, �89 D(0, O) 

where the rows stand for the sesquispinor indices of 60- and the columns 
for the time-space indices of go-. 

On its face, the theory has room for gravitons D(1, 1), electromagnetic 
field (D(1, 0) 4- D(0, 1) 4- D(�89 �89 spin -1 particles (D( 1, 0) 4- D(0, �89 spin -3 
particles ((D(�89 1) 4- D(1,1) 4- D(1, 0) 4- D(0, �89 and scalar fields D(0, 0). 
We should now follow the clue given by the transformation properties of 
the fields and study the physical properties of their quanta in order to verify 
the above identification. 

3.5. Future Problems 

This work opens many questions about hypergravity. Here I point out 
only four: 

(i) Section 2.1 presented two hyperactions g~]~a~ and R. Do all hyper- 
actions quasilinear in the Nth order differ at most by a constant multiplier 
and terms of lower degrees? 

(ii) Do hypergravitational black and white holes exist? If so, what is 
their geometry and topology? 

(iii) How do we account for our experience of only four time-space 
dimensions? 



Gravity in Hyperspin Manifolds 271 

(iv) What is the linearized quantum theory? Although the variable o- 
likely has only statistical meaning, the quantized theory might have meaning 
at low energies. 

4. C O N C L U S I O N S  

We have investigated the relations between the hyperspin vector cr and 
the chronometric tensor g in Bergmann manifolds of  all possible dimensions. 
Though o. is the fundamental  entity, it may without loss of information be 
replaced by g in any invariant action density. However, o. still plays an 
indispensable role as the fundamental  variable to be varied in the process 
of  deriving the equations of  motion from an action. 

The only invariant tensors in a Bergmann manifold are the obvious 
ones, linear combinations of  products of  Kronecker and Levi-Civita tensors 
and a scalar density. ', 

Unlike the Riemannian case, where quasilinear differential equations 
of  the second differential order exist for any dimension, in Bergmann 
manifolds such an equation can be constructed only for n = 4. 

Zumino 's  actions generalize from Riemannian to Bergmann manifolds 
only for n = 4. 

We propose two actions for Bergmann manifolds; for N = 2 they are 
proport ional  to the Einstein-Hilbert  action. From one of the proposed 
actions (R),  we derive the equations of motion in vacuum; then, assuming 
a nongravitational field q~ on the manifold, we define the energy tensor and 
derive the equations of  motion for a Bergmann manifold with sources. 

A preliminary analysis based on a small perturbation 8o- to a flat 
background describes gauge quanta with spins 0, 1/2, 1, 3/2, and 2 for 
any N. 

It now seems possible and physically interesting to do for arbitrary N 
all the spinorial physics that has been done in recent decades for N = 2. 
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